Functional characterization of DNase X, a novel endonuclease expressed in muscle cells.

نویسندگان

  • M Los
  • D Neubüser
  • J F Coy
  • M Mozoluk
  • A Poustka
  • K Schulze-Osthoff
چکیده

The activation of endonucleases resulting in the degradation of genomic DNA is one of the most characteristic changes in apoptosis. Here, we report the characterization of a novel endonuclease, termed DNase X due to its X-chromosomal localization. The active nuclease is a 35 kDa protein with 39% identity to DNase I. When incubated with isolated nuclei, recombinant DNase X was capable of triggering DNA degradation at internucleosomal sites. Similarly to DNase I, the nuclease activity of DNase X was dependent on Ca(2+) and Mg(2+) and inhibited by Zn(2+) ions or chelators of bivalent cations. Overexpression of DNase X caused internucleosomal DNA degradation and induction of cell death associated with increased caspase activation. Despite the presence of two potential caspase cleavage sites, DNase X was processed neither in vitro nor in vivo by different caspases. Interestingly, after initiation of apoptosis DNase X was translocated from the cytoplasm to the nuclear compartment and aggregated as a detergent-insoluble complex. Abundant expression of DNase X mRNA was detected in heart and skeletal muscle cells, suggesting that DNase X may be involved in apoptotic or other biological events in muscle tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

Functional and structural characterization of chimeras of a bacterial genotoxin and human type I DNAse.

Chimeras composed of the cdtB gene of a novel bacterial genotoxin and the human type I DNAse I gene were constructed and their products characterized relative to the biochemical and enzymatic properties of the native proteins. The product of a cdtB/DNAse I chimera formed a heterotrimer with the CdtA and CdtC subunits of the genotoxin, and targeted mutations increased the specific activity of th...

متن کامل

Physical and biochemical properties of mammalian DNase X proteins: non-AUG translation initiation of porcine and bovine mRNAs for DNase X.

DNase X is the first human DNase protein identified as being homologous with DNase I. In the present study we describe the isolation of several mammalian DNase X cDNAs and the molecular characterization of their coding proteins. A sequence comparison reveals some conserved characteristics: all the mammalian DNase X proteins have an N-terminal signal peptide, a potential N-linked glycosylation s...

متن کامل

EheA from Exiguobacterium sp. yc3 is a novel thermostable DNase belonging to HNH endonuclease superfamily.

The HNH endonuclease superfamily usually contains a conserved HNH motif in the sequence, and the second subfamily of it uses N to replace the second H in the HNH motif. A bacterium with extracellular thermostable DNase was isolated and identified as Exiguobacterium sp. yc3. A 20 kDa putative DNase was later purified and the encoding gene of it was amplified and sequenced, the deduced amino acid...

متن کامل

DLAD, a novel mammalian divalent cation-independent endonuclease with homology to DNase II.

In this report, we describe the molecular cloning and characterization of DLAD, a novel mammalian deoxy-ribonuclease homologous to DNase II. The full length cDNA for mouse DLAD has been cloned by polymerase chain reaction. The cDNA contains a 1065 bp open reading frame (ORF) encoding a 354 amino acid protein with a calculated molecular mass of 40 767. The predicted protein for DLAD shares 34.4%...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 39 25  شماره 

صفحات  -

تاریخ انتشار 2000